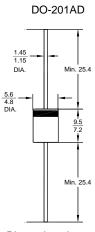
BY296 THRU BY299

FAST RECOVERY RECTIFIERS

Reverse Voltage – 100 to 800 V Forward Current – 2 A

Features

- · Low forward voltage drop
- Low cost
- Low leakage
- High current capability


Mechanical Data

• Case: DO-201AD, Molded plastic

• Terminals: Axial leads, solderable per MIL-STD -202,

method 208 guaranteed

• Polarity: Color band denotes cathode

Dimensions in mm

Absolute Maximum Ratings and Characteristics

Rating at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Parameter	Symbols	BY296	BY297	BY298	BY299	Units
Maximum Recurrent Peak Reverse Voltage	V_{RRM}	100	200	400	800	V
Maximum RMS Voltage	V_{RMS}	70	140	280	560	V
Maximum DC Blocking Voltage	V_{DC}	100	200	400	800	V
Maximum Average Forward Rectified Current 0.375"(9.5 mm) lead length at T _A = 75 °C	I _{F(AV)}	2				Α
Peak Forward Surge Current 8.3 ms Single Half Sine Wave Superimposed on Rated Load at $T_J = 125$ °C	I _{FSM}	70				Α
Maximum Forward Voltage at 2 A	V _F	1.3				V
Maximum Reverse Current at $T_A = 25$ °C at Rated DC Blocking Voltage at $T_A = 100$ °C	I _R	10 100				μΑ
Maximum Reverse Recovery Time 1)	t _{rr}	500			ns	
Typical Junction Capacitance 2)	CJ	32				pF
Typical Thermal Resistance 3)	$R_{\theta JA}$	22				°C/W
Operating and Storage Temperature Range	T _J ,T _{Stg}	- 55 to + 150				°C

 $^{^{1)}}$ Measured with I_F = 0.5 A, I_R = 1 A, I_{rr} = 0.25 A.

²⁾ Measured at 1 MHz and applied reverse voltage of 4V D.C.

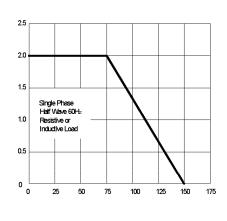
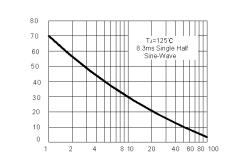

³⁾ Thermal resistance from junction to ambient at 0.375" (9.5 mm) lead length.

FIG.1 - FORWARD CURRENT DERATING CURVE

FIG.2 - MAXIMUM NON-REPETITIVE SURGE CURRENT

AVERAGE FORWARD CURRENT AMPERES


JUNCTION CAPACITANCE, pF

AMBIENT TEMPERATURE, °C

PEAK FORWARD SURGE CURRENT AMPERES

INSTANTANEOUS FORWARD CURRENT

I,LEAD LENGTH(mm)

FIG.3 - TYPICAL JUNCTION CAPACITANCE

100 40 20 10 4 T.=25°C f=1M-b 2 1 2 4 10 2 4 10 20 40 100

REVERSE VOLTAGE, VOLTS

FIG.4 - TYPICAL FORWARD CHARACTERISTICS

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

Dated: 17/04/2008 B