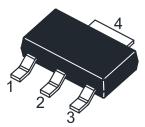
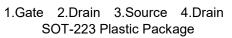

P-Channel Enhancement Mode MOSFET


Features


- AEC-Q101 Qualified
- Halogen and Antimony Free(HAF), RoHS compliant

Applications

- Portable appliances
- Battery management

Key Parameters

Parameter	Value	Unit	
-BV _{DSS}	60	V	
P Max	160 @ -V _{GS} = 10 V	mΩ	
R _{DS(ON)} Max	200 @ -V _{GS} = 4.5 V	mΩ	
-V _{GS(th)} typ	1.7	V	
Q _g typ	9.3 @ -V _{GS} = 10 V	nC	

Absolute Maximum Ratings (at T_a = 25°C unless otherwise specified)

Parameter		Symbol	Value	Unit
Drain-Source Voltage		-V _{DS}	60	V
Gate-Source Voltage		V _{GS}	± 20	V
Drain Current	T _c = 25°C T _c = 100°C	-I _D	6 3.8	А
Peak Drain Current, Pulsed ¹⁾		-I _{DM}	22	А
Single-Pulse Avalanche Current		-I _{AS}	14	А
Single-Pulse Avalanche Energy ²⁾		E _{AS}	10	mJ
Power Dissipation	T _c = 25°C	PD	10.4	W
Operating Junction and Storage Temperature Rang	T _j , T _{stg}	- 55 to + 150	C°	

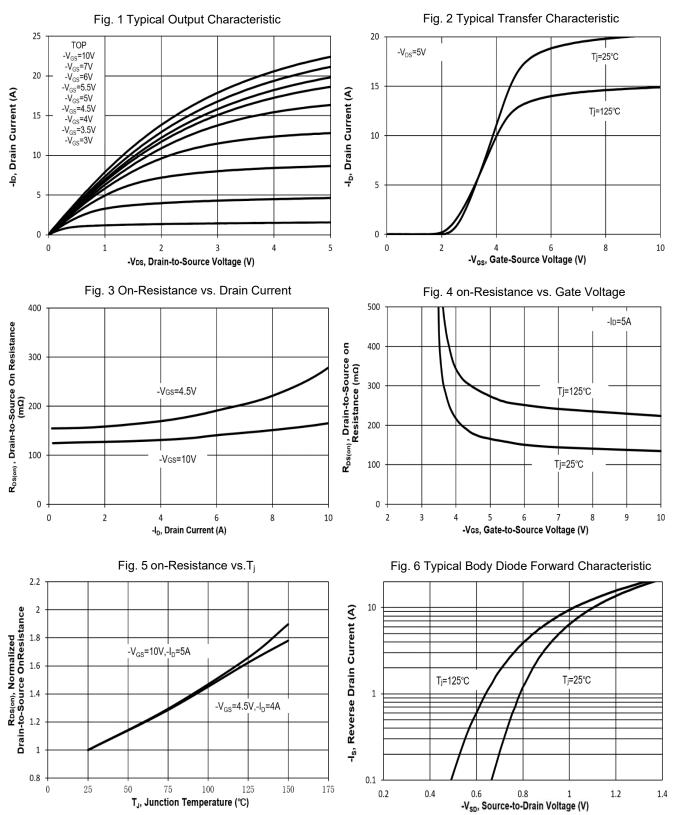
Thermal Characteristics

Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Case	$R_{ ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext$	12	°C/W
Thermal Resistance from Junction to Ambient ³⁾	$R_{ extsf{ heta}JA}$	50	°C/W

¹⁾ Pulse Test: Pulse Width \leq 100 µs, Duty Cycle \leq 2%, Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150°C.

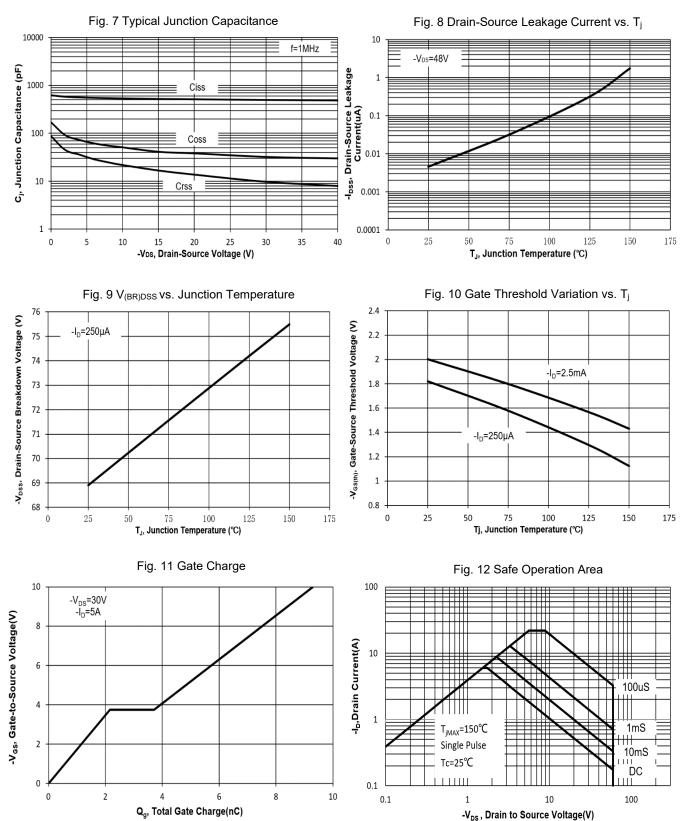
 $^{2)}$ Limited by $T_{J(MAX)},$ starting T_{J} = 25 °C, L =0.1 mH, R_{g} = 25 $\Omega,$ I_{D} = 14 A, V_{GS} = 10 V.

³⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate in still air.



Characteristics at $T_a = 25^{\circ}C$ unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage	-BV _{DSS}	60	_	_	V
at -I _D = 250 μA	-DV _{DSS}	00	-	-	v
Drain-Source Leakage Current	-I _{DSS}	-	-	1	μA
at $-V_{DS} = 60 V$	-035			•	μ. ι
Gate Leakage Current	I _{GSS}	-	-	± 100	nA
at $V_{GS} = \pm 20 V$					
Gate-Source Threshold Voltage	-V _{GS(th)}	1.2	-	2.5	V
at $V_{DS} = V_{GS}$, $-I_D = 250 \ \mu A$ Drain-Source On-State Resistance					
at $-V_{GS} = 10 \text{ V}, -I_D = 5 \text{ A}$	R _{DS(on)}	_	146	160	mΩ
at $-V_{GS} = 4.5 \text{ V}, -I_D = 4 \text{ A}$	US(on)	-	-	200	11152
				200	
Forward Transconductance			1		
at $-V_{DS} = 5 V$, $-I_D = 5 A$	g _{fs}	-	6	-	S
Gate Resistance			47.0		
at $V_{DS} = 0 V$, $V_{GS} = 0 V$, f = 1 MHz	R _g	-	17.6	-	Ω
Input Capacitance	0		406		~ [
at $-V_{DS} = 30 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$	C _{iss}	-	496	-	pF
Output Capacitance	C _{oss}		32		рF
at -V _{DS} = 30 V, V _{GS} = 0 V, f = 1 MHz	C _{oss}	-	52	-	pF
Reverse Transfer Capacitance	C _{rss}	_	10	_	pF
at -V _{DS} = 30 V, V _{GS} = 0 V, f = 1 MHz	Orss	-	10	-	рі
Total Gate Charge					
at $-V_{DS} = 30 \text{ V}, -V_{GS} = 10 \text{ V}, -I_{D} = 5 \text{ A}$	Q _g	-	9.3	-	nC
at $-V_{DS} = 30 \text{ V}, -V_{GS} = 4.5 \text{ V}, -I_D = 5 \text{ A}$		-	4.3	-	
Gate-Source Charge	Q_{gs}	-	2.2	-	nC
at $-V_{DS} = 30 V$, $-V_{GS} = 10 V$, $-I_D = 5 A$	3-				
Gate-Drain Charge $(1 - 10)/(1 - 5A)$	Q_{gd}	-	1.6	-	nC
at $-V_{DS} = 30 V$, $-V_{GS} = 10 V$, $-I_D = 5 A$	5				
Turn-On Delay Time at $-V_{DD}$ = 30 V, $-V_{GS}$ = 10 V, $-I_D$ = 5 A, R _g = 3.3 Ω	t _{d(on)}	-	6	-	ns
Turn-On Rise Time					
at $-V_{DD} = 30 \text{ V}, -V_{GS} = 10 \text{ V}, -I_D = 5 \text{ A}, \text{ R}_g = 3.3 \Omega$	t _r	-	12	-	ns
Turn-Off Delay Time					
at $-V_{DD} = 30 \text{ V}, -V_{GS} = 10 \text{ V}, -I_D = 5 \text{ A}, \text{ R}_g = 3.3 \Omega$	t _{d(off)}	-	12	-	ns
Turn-Off Fall Time					
at $-V_{DD} = 30 \text{ V}, -V_{GS} = 10 \text{ V}, -I_D = 5 \text{ A}, \text{ R}_g = 3.3 \Omega$	t _f	-	2	-	ns
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage					
at $-I_s = 1 \text{ A}$, $V_{GS} = 0 \text{ V}$	-V _{SD}	-	-	1.2	V
Body-Diode Continuous Current	-I _S	_	_	6	А
Body-Diode Continuous Current, Pulsed		-	_	22	A
	-I _{SM}	-	-	~~~	
Body Diode Reverse Recovery Time at $-I_s = 5 \text{ A}$, di/dt = 100 A / μ s	t _{rr}	-	9	-	ns
Body Diode Reverse Recovery Charge					
at $-I_s = 5 \text{ A}$, di/dt = 100 A / μ s	Q _{rr}	-	5.2	-	nC


Electrical Characteristics Curves

Dated: 09/11/2020 Rev: 01

Electrical Characteristics Curves

Dated: 09/11/2020 Rev: 01

Electrical Characteristics Curves

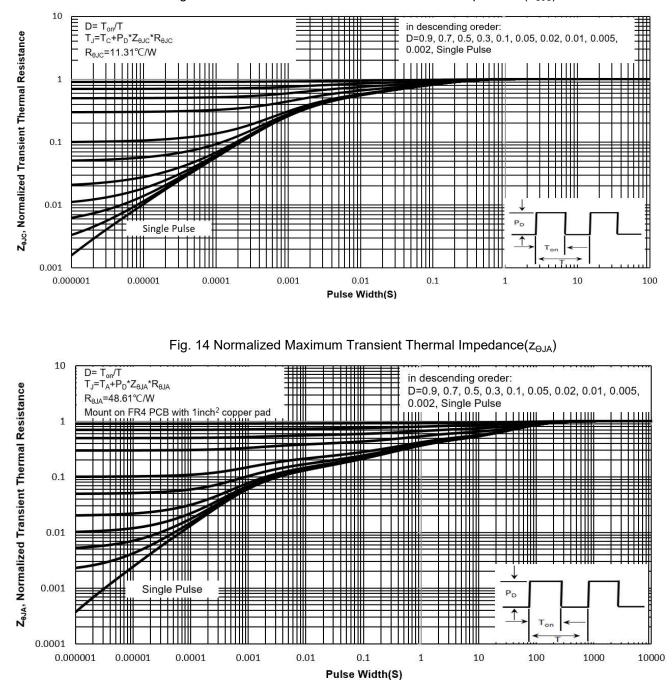
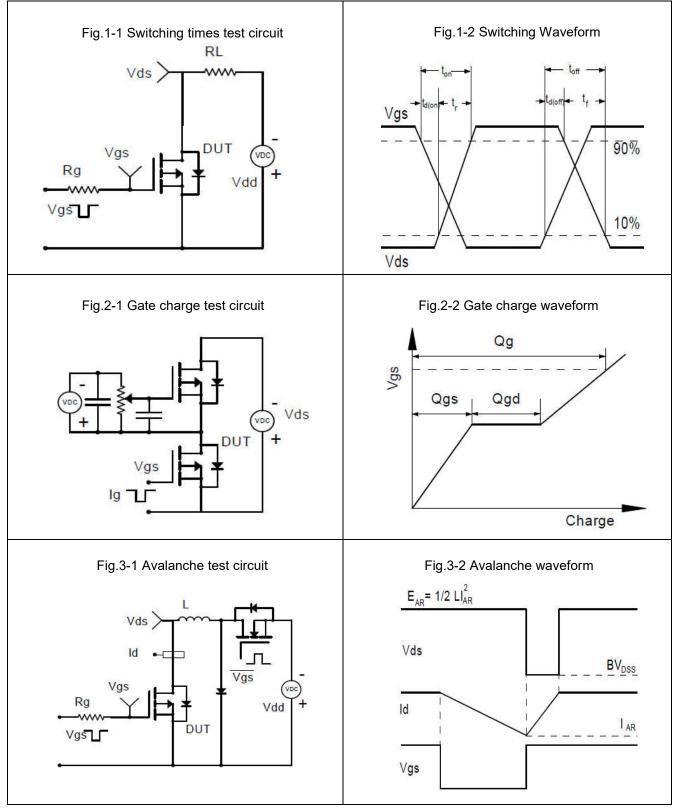
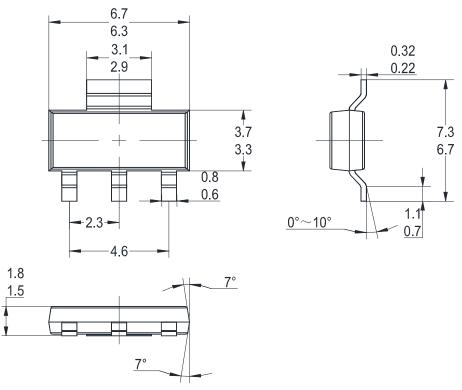
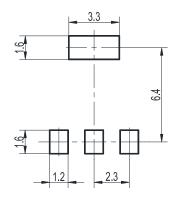



Fig. 13 Normalized Maximum Transient Thermal Impedance($z_{\Theta,C}$)


WTQ06P1K4L-AH

Test Circuits



Package Outline (Dimensions in mm)

Recommended Soldering Footprint

Packing information

	Package	Tape Width	Pitch		Reel Size		Der Beel Beeking Quentity	
		(mm)	mm	inch	mm	inch	Per Reel Packing Quantity	
	SOT-223	12	8 ± 0.1	0.315 ± 0.004	330	13	3,000	

Marking information

" TQ06P1K4L " = Part No.

" ****** " = Date Code Marking

Font type: Arial

SOT-223

IMPORTANT NOTICE

Our company and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability without further notice to this document and any product described herein.

Statements described herein regarding the reliability and suitability of products is for illustrative purposes only. Products specifically described herein are not authorized for use as critical components in life support devices, automobile, military, aviation or aerospace only with the written approval of our company.

The information contained herein is presented only as guidance for product use. No license to any intellectual property rights is granted under this document. No responsibility is assumed by our company for any infringement of patents or any other intellectual property rights of third party that may result from the use of the product.

